cointegrated/rubert-tiny2

sentence similaritysentence-transformersrusentence-transformerspytorchsafetensorsbertpretrainingrussianmit
610.1K

pip install transformers sentencepiece

import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2") model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")

model.cuda() # uncomment it if you have a GPU

def embed_bert_cls(text, model, tokenizer): t = tokenizer(text, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**{k: v.to(model.device) for k, v in t.items()}) embeddings = model_output.last_hidden_state[:, 0, :] embeddings = torch.nn.functional.normalize(embeddings) return embeddings[0].cpu().numpy()

print(embed_bert_cls('привет мир', model, tokenizer).shape)

(312,)


Alternatively, you can use the model with `sentence_transformers`:
```Python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('cointegrated/rubert-tiny2')
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
embeddings = model.encode(sentences)
print(embeddings)
DEPLOY IN 60 SECONDS

Run rubert-tiny2 on Runcrate

Deploy on H100, A100, or RTX GPUs. Pay only for what you use. No setup required.