cambridgeltl/SapBERT-from-PubMedBERT-fulltext

feature extractiontransformersentransformerspytorchtfjaxsafetensorsbertapache-2.0
1.3M

replace with your own list of entity names

all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"]

bs = 128 # batch size during inference all_embs = [] for i in tqdm(np.arange(0, len(all_names), bs)): toks = tokenizer.batch_encode_plus(all_names[i:i+bs], padding="max_length", max_length=25, truncation=True, return_tensors="pt") toks_cuda = {} for k,v in toks.items(): toks_cuda[k] = v.cuda() cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding all_embs.append(cls_rep.cpu().detach().numpy())

all_embs = np.concatenate(all_embs, axis=0)


For more details about training and eval, see SapBERT [github repo](https://github.com/cambridgeltl/sapbert).


### Citation
```bibtex
@inproceedings{liu-etal-2021-self,
    title = "Self-Alignment Pretraining for Biomedical Entity Representations",
    author = "Liu, Fangyu  and
      Shareghi, Ehsan  and
      Meng, Zaiqiao  and
      Basaldella, Marco  and
      Collier, Nigel",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.naacl-main.334",
    pages = "4228--4238",
    abstract = "Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.",
}
DEPLOY IN 60 SECONDS

Run SapBERT-from-PubMedBERT-fulltext on Runcrate

Deploy on H100, A100, or RTX GPUs. Pay only for what you use. No setup required.