Runnable with vLLMilab model download --repository docker://registry.redhat.io/rhelai1/llama-4-scout-17b-16e-instruct-quantized-w4a16:1.5
```bash
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/llama-4-scout-17b-16e-instruct-quantized-w4a16
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/llama-4-scout-17b-16e-instruct-quantized-w4a16
See Red Hat Enterprise Linux AI documentation for more details.
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: Llama-4-Scout-17B-16E-Instruct-quantized.w4a16 # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: Llama-4-Scout-17B-16E-Instruct-quantized.w4a16 # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-llama-4-scout-17b-16e-instruct-quantized-w4a16:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
See Red Hat Openshift AI documentation for more details.
The model was evaluated on the OpenLLM leaderboard tasks (v1 and v2), long context RULER, multimodal MMMU, and multimodal ChartQA. All evaluations are obtained through lm-evaluation-harness.
OpenLLM v1
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--batch_size auto
OpenLLM v2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=8,gpu_memory_utilization=0.5,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
Long Context RULER
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=524288,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks ruler \
--metadata='{"max_seq_lengths":[131072]}' \
--batch_size auto
Multimodal MMMU
lm_eval \
--model vllm-vlm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
--tasks mmmu_val \
--apply_chat_template \
--batch_size auto
Multimodal ChartQA
export VLLM_MM_INPUT_CACHE_GIB=8
lm_eval \
--model vllm-vlm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
--tasks chartqa \
--apply_chat_template \
--batch_size auto
| Recovery (%) | meta-llama/Llama-4-Scout-17B-16E-Instruct | RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16 (this model) | |
|---|---|---|---|
| ARC-Challenge 25-shot | 98.51 | 69.37 | 68.34 |
| GSM8k 5-shot | 100.4 | 90.45 | 90.90 |
| HellaSwag 10-shot | 99.67 | 85.23 | 84.95 |
| MMLU 5-shot | 99.75 | 80.54 | 80.34 |
| TruthfulQA 0-shot | 99.82 | 61.41 | 61.30 |
| WinoGrande 5-shot | 98.98 | 77.90 | 77.11 |
| OpenLLM v1 Average Score | 99.59 | 77.48 | 77.16 |
| IFEval 0-shot avg of inst and prompt acc | 99.51 | 86.90 | 86.47 |
| Big Bench Hard 3-shot | 99.46 | 65.13 | 64.78 |
| Math Lvl 5 4-shot | 99.22 | 57.78 | 57.33 |
| GPQA 0-shot | 100.0 | 31.88 | 31.88 |
| MuSR 0-shot | 100.9 | 42.20 | 42.59 |
| MMLU-Pro 5-shot | 98.67 | 55.70 | 54.96 |
| OpenLLM v2 Average Score | 99.54 | 56.60 | 56.34 |
| MMMU 0-shot | 100.6 | 53.44 | 53.78 |
| ChartQA 0-shot exact_match | 100.1 | 65.88 | 66.00 |
| ChartQA 0-shot relaxed_accuracy | 99.55 | 88.92 | 88.52 |
| Multimodal Average Score | 100.0 | 69.41 | 69.43 |
| RULER seqlen = 131072 niah_multikey_1 | 98.41 | 88.20 | 86.80 |
| RULER seqlen = 131072 niah_multikey_2 | 94.73 | 83.60 | 79.20 |
| RULER seqlen = 131072 niah_multikey_3 | 96.44 | 78.80 | 76.00 |
| RULER seqlen = 131072 niah_multiquery | 98.79 | 95.40 | 94.25 |
| RULER seqlen = 131072 niah_multivalue | 101.6 | 73.75 | 74.95 |
| RULER seqlen = 131072 niah_single_1 | 100.0 | 100.00 | 100.0 |
| RULER seqlen = 131072 niah_single_2 | 100.0 | 99.80 | 99.80 |
| RULER seqlen = 131072 niah_single_3 | 100.2 | 99.80 | 100.0 |
| RULER seqlen = 131072 ruler_cwe | 87.39 | 39.42 | 33.14 |
| RULER seqlen = 131072 ruler_fwe | 98.13 | 92.93 | 91.20 |
| RULER seqlen = 131072 ruler_qa_hotpot | 100.4 | 48.20 | 48.40 |
| RULER seqlen = 131072 ruler_qa_squad | 96.22 | 53.57 | 51.55 |
| RULER seqlen = 131072 ruler_qa_vt | 98.82 | 92.28 | 91.20 |
| RULER seqlen = 131072 Average Score | 98.16 | 80.44 | 78.96 |