inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth
prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, )
output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) depth.show()
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt).
| Factors | Description |
| ----------- | ----------- |
| Groups | Multiple datasets compiled together |
| Instrumentation | - |
| Environment | Inference completed on Intel Xeon Platinum 8280 CPU @ 2.70GHz with 8 physical cores and an NVIDIA RTX 2080 GPU. |
| Card Prompts | Model deployment on alternate hardware and software will change model performance |
| Metrics | Description |
| ----------- | ----------- |
| Model performance measures | Zero-shot Transfer |
| Decision thresholds | - |
| Approaches to uncertainty and variability | - |
| Training and Evaluation Data | Description |
| ----------- | ----------- |
| Datasets | The dataset is called MIX 6, and contains around 1.4M images. The model was initialized with ImageNet-pretrained weights.|
| Motivation | To build a robust monocular depth prediction network |
| Preprocessing | "We resize the image such that the longer side is 384 pixels and train on random square crops of size 384. ... We perform random horizontal flips for data augmentation." See [Ranftl et al. (2021)](https://arxiv.org/abs/2103.13413) for more details. |
## Quantitative Analyses
| Model | Training set | DIW WHDR | ETH3D AbsRel | Sintel AbsRel | KITTI δ>1.25 | NYU δ>1.25 | TUM δ>1.25 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| DPT - Large | MIX 6 | 10.82 (-13.2%) | 0.089 (-31.2%) | 0.270 (-17.5%) | 8.46 (-64.6%) | 8.32 (-12.9%) | 9.97 (-30.3%) |
| DPT - Hybrid | MIX 6 | 11.06 (-11.2%) | 0.093 (-27.6%) | 0.274 (-16.2%) | 11.56 (-51.6%) | 8.69 (-9.0%) | 10.89 (-23.2%) |
| MiDaS | MIX 6 | 12.95 (+3.9%) | 0.116 (-10.5%) | 0.329 (+0.5%) | 16.08 (-32.7%) | 8.71 (-8.8%) | 12.51 (-12.5%)
| MiDaS [30] | MIX 5 | 12.46 | 0.129 | 0.327 | 23.90 | 9.55 | 14.29 |
| Li [22] | MD [22] | 23.15 | 0.181 | 0.385 | 36.29 | 27.52 | 29.54 |
| Li [21] | MC [21] | 26.52 | 0.183 | 0.405 | 47.94 | 18.57 | 17.71 |
| Wang [40] | WS [40] | 19.09 | 0.205 | 0.390 | 31.92 | 29.57 | 20.18 |
| Xian [45] | RW [45] | 14.59 | 0.186 | 0.422 | 34.08 | 27.00 | 25.02 |
| Casser [5] | CS [8] | 32.80 | 0.235 | 0.422 | 21.15 | 39.58 | 37.18 |
Table 1. Comparison to the state of the art on monocular depth estimation. We evaluate zero-shot cross-dataset transfer according to the
protocol defined in [30]. Relative performance is computed with respect to the original MiDaS model [30]. Lower is better for all metrics. ([Ranftl et al., 2021](https://arxiv.org/abs/2103.13413))
| Ethical Considerations | Description |
| ----------- | ----------- |
| Data | The training data come from multiple image datasets compiled together. |
| Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of monocular depth image datasets. |
| Mitigations | No additional risk mitigation strategies were considered during model development. |
| Risks and harms | The extent of the risks involved by using the model remain unknown. |
| Use cases | - |
| Caveats and Recommendations |
| ----------- |
| Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2103-13413,
author = {Ren{\'{e}} Ranftl and
Alexey Bochkovskiy and
Vladlen Koltun},
title = {Vision Transformers for Dense Prediction},
journal = {CoRR},
volume = {abs/2103.13413},
year = {2021},
url = {https://arxiv.org/abs/2103.13413},
eprinttype = {arXiv},
eprint = {2103.13413},
timestamp = {Wed, 07 Apr 2021 15:31:46 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2103-13413.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}