SalamandraTA-7b-instruct is a translation LLM that has been instruction-tuned from SalamandraTA-7b-base. The base model results from continually pre-training Salamandra-7b on parallel data and has not been published, but is reserved for internal use. SalamandraTA-7b-instruct is proficient in 35 European languages (plus 3 varieties) and supports translation-related tasks, namely: sentence-level-translation, paragraph-level-translation, document-level-translation, automatic post-editing, grammar checking, machine translation evaluation, alternative translations, named-entity-recognition and context-aware translation.
[!WARNING] DISCLAIMER: This version of Salamandra is tailored exclusively for translation tasks. It lacks chat capabilities and has not been trained with any chat instructions.
SalamandraTA-7b-base is a continual pre-training of Salamandra-7b using parallel data, resulting in a total of 424B tokens processed during training.
| Total Parameters | 7,768,117,248 |
| Embedding Parameters | 1,048,576,000 |
| Layers | 32 |
| Hidden size | 4,096 |
| Attention heads | 32 |
| Context length | 8,192 |
| Vocabulary size | 256,000 |
| Precision | bfloat16 |
| Embedding type | RoPE |
| Activation Function | SwiGLU |
| Layer normalization | RMS Norm |
| Flash attention | ✅ |
| Grouped Query Attention | ✅ |
| Num. query groups | 8 |
The model is intended for both research and commercial use in any of the languages included in the training data for general machine translation tasks.
The model is not intended for malicious activities, such as harming others or violating human rights. Any downstream application must comply with current laws and regulations. Irresponsible usage in production environments without proper risk assessment and mitigation is also discouraged.
SalamandraTA-7b-base was continually pre-trained using NVIDIA’s NeMo Framework, which leverages PyTorch Lightning for efficient model training in highly distributed settings.
SalamandraTA-7b-instruct was produced with FastChat.
All models were trained on MareNostrum 5, a pre-exascale EuroHPC supercomputer hosted and operated by Barcelona Supercomputing Center.
The accelerated partition is composed of 1,120 nodes with the following specifications:
You can translate between the following 35 languages (and 3 varieties):
Aragonese, Asturian, Basque, Bulgarian, Catalan (and Catalan-Valencian variety), Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, Galician, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Norwegian (Bokmål and Nynorsk varieties), Occitan (and Aranese variety), Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish, Swedish, Ukrainian, Welsh.
The instruction-following model uses the commonly adopted ChatML template:
<|im_start|>system
{SYSTEM PROMPT}<|im_end|>
<|im_start|>user
{USER PROMPT}<|im_end|>
<|im_start|>assistant
{MODEL RESPONSE}<|im_end|>
<|im_start|>user
[...]
The easiest way to apply it is by using the tokenizer's built-in functions, as shown in the following snippet.
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "BSC-LT/salamandraTA-7b-instruct"
source = 'Spanish'
target = 'Catalan'
sentence = "Ayer se fue, tomó sus cosas y se puso a navegar. Una camisa, un pantalón vaquero y una canción, dónde irá, dónde irá. Se despidió, y decidió batirse en duelo con el mar. Y recorrer el mundo en su velero. Y navegar, nai-na-na, navegar"
text = f"Translate the following text from {source} into {target}.\n{source}: {sentence} \n{target}:"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16
)
message = [ { "role": "user", "content": text } ]
date_string = datetime.today().strftime('%Y-%m-%d')
prompt = tokenizer.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True,
date_string=date_string
)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
input_length = inputs.shape[1]
outputs = model.generate(input_ids=inputs.to(model.device),
max_new_tokens=400,
early_stopping=True,
num_beams=5)
print(tokenizer.decode(outputs[0, input_length:], skip_special_tokens=True))
# Ahir se'n va anar, va recollir les seves coses i es va fer a la mar. Una camisa, uns texans i una cançó, on anirà, on anirà. Es va acomiadar i va decidir batre's en duel amb el mar. I fer la volta al món en el seu veler. I navegar, nai-na-na, navegar
Using this template, each turn is preceded by a <|im_start|> delimiter and the role of the entity
(either user, for content supplied by the user, or assistant for LLM responses), and finished with the <|im_end|> token.
For machine translation tasks, you can use the following prompt template:
Translate the following text from {source} into {target}.
{source}: {source sentence}
{target}:
source = 'Catalan'
target = 'Galician'
source_sentence = "Als antics egipcis del període de l'Imperi Nou els fascinaven els monuments dels seus predecessors, que llavors tenien més de mil anys."
text = f"Translate the following text from {source} into {target}.\n{source}: {source_sentence} \n{target}:"
# Os antigos exipcios do período do Imperio Novo estaban fascinados polos monumentos dos seus predecesores, que entón tiñan máis de mil anos de antigüidade.
For post-editing tasks, you can use the following prompt template:
Please fix any mistakes in the following {source}-{target} machine translation or keep it unedited if it's correct.
Source: {source_sentence}
MT: {machine_translation}
Corrected:"
source = 'Catalan'
target = 'English'
source_sentence = 'Rafael Nadal i Maria Magdalena van inspirar a una generació sencera.'
machine_translation = 'Rafael Christmas and Maria the Muffin inspired an entire generation each in their own way.'
text = f"Please fix any mistakes in the following {source}-{target} machine translation or keep it unedited if it's correct.\nSource: {source_sentence} \nMT: {machine_translation} \nCorrected:"
# Rafael Nadal and Maria Magdalena inspired an entire generation.
For document-level translation tasks, you can use the following prompt template:
Please translate this text from {source} into {target}.
{source}: {1st paragraph of the document}
{2nd paragraph of the document}
{Nth paragraph of the document}
{target}:
source = 'English'
target = 'Asturian'
text = """Please translate this text from {} into {}.\n{}: President Donald Trump, who campaigned on promises to crack down on illegal immigration, has raised alarms in the U.S. dairy industry with his threat to impose 25% tariffs on Mexico and Canada by February 2025. This move is part of a broader strategy to declare a national emergency at the southern border to halt illegal migration completely.
However, the implications for the agriculture sector, particularly dairy, are significant. Approximately half of the U.S. dairy industry's workforce consists of immigrant labor, many of whom are undocumented. The National Milk Producers Federation estimates that removing immigrant workers could decimate the dairy herd by 2.1 million cows and slash milk production by nearly 50 billion pounds, leading to a dramatic 90.4% increase in milk prices.
The complex perspectives of Americans on undocumented workers were highlighted in a Pew Research Center study. While 64% of U.S. adults support legal pathways for undocumented immigrants, 35% oppose it—a gap that has been narrowing recently. Factors influencing public opinion include the belief that immigrants should have jobs and pass security checks, contrasted by concerns about lawbreakers being rewarded, fairness for legal migrants, and resource allocation.
According to Zach Rutledge, an agricultural economist at Michigan State University, as nations grow wealthier, their labor forces transition away from agriculture toward sectors like services and manufacturing. This shift has led to the U.S. relying heavily on immigrant labor for agricultural work. Domestic workers, even with employment taxes, may cost $15 to $25 an hour, while H-2A visa program workers might cost $25 to $30 an hour, accounting for additional housing expenses.
The National Milk Producers Federation has been vocal in advocating for changes to the H-2A visa program, which outside of its current seasonal limitations, does not support the dairy industry's year-round labor needs. Executive vice-president Jaime Castaneda reiterated the need for legislative clarity to address the undocumented workforce issues in dairy farming.
The Farm Workforce Modernization Act of 2023, which could grant legal status to certain undocumented farmworkers, has been stalled in Congress, despite acknowledgment of the sector's importance to feeding America. The need for coordinated legislative efforts to ensure both border security and labor market stability is imperative moving forward.
{}:""".format(source, target, source, target)
For named-entity recognition tasks, you can use the following prompt template:
Analyse the following tokenized text and mark the tokens containing named entities.
Use the following annotation guidelines with these tags for named entities:
- ORG (Refers to named groups or organizations)
- PER (Refers to individual people or named groups of people)
- LOC (Refers to physical places or natural landmarks)
- MISC (Refers to entities that don't fit into standard categories).
Prepend B- to the first token of a given entity and I- to the remaining ones if they exist.
If a token is not a named entity, label it as O.
Input: {list of words in a sentence}
Marked:
text = """Analyse the following tokenized text and mark the tokens containing named entities.
Use the following annotation guidelines with these tags for named entities:
- ORG (Refers to named groups or organizations)
- PER (Refers to individual people or named groups of people)
- LOC (Refers to physical places or natural landmarks)
- MISC (Refers to entities that don't fit into standard categories).
Prepend B- to the first token of a given entity and I- to the remaining ones if they exist.
If a token is not a named entity, label it as O.
Input: ['La', 'defensa', 'del', 'antiguo', 'responsable', 'de', 'la', 'RFEF', 'confirma', 'que', 'interpondrá', 'un', 'recurso.']
Marked: """
# [('La', 'O'), ('defensa', 'O'), ('del', 'O'), ('antiguo', 'O'), ('responsable', 'O'), ('de', 'O'), ('la', 'O'), ('RFEF', 'B-ORG'), ('confirma', 'O'), ('que', 'O'), ('interpondrá', 'O'), ('un', 'O'), ('recurso.', 'O')]
For fixing any mistakes in grammar, you can use the following prompt template:
Please fix any mistakes in the following {source} sentence or keep it unedited if it's correct.
Sentence: {sentence}
Corrected:
source = 'Catalan'
sentence = 'Entonses, el meu jefe m’ha dit que he de treballar els fins de setmana.'
text = f"Please fix any mistakes in the following {source} sentence or keep it unedited if it's correct.\nSentence: {sentence} \nCorrected:"
# Llavors, el meu cap m'ha dit que he de treballar els caps de setmana.
The pretraining corpus consists of 424 billion tokens of Catalan-centric, Spanish-centric, and English-centric parallel data, including all of the official European languages plus Catalan, Basque, Galician, Asturian, Aragonese and Aranese. It amounts to 6,574,251,526 parallel sentence pairs.
This highly multilingual corpus is predominantly composed of data sourced from OPUS, with additional data taken from the NTEU Project, Aina Project, and other sources (see: Data Sources and References). Where little parallel Catalan <-> xx data could be found, synthetic Catalan data was generated from the Spanish side of the collected Spanish <-> xx corpora using Projecte Aina’s Spanish-Catalan model. The final distribution of languages was as below:

Click the expand button below to see the full list of corpora included in the training data.
| Dataset | Ca-xx Languages | Es-xx Langugages | En-xx Languages |
|---|---|---|---|
| AINA | en | ||
| ARANESE-SYNTH-CORPUS-BSC | arn | ||
| BOUA-SYNTH-BSC | val | ||
| BOUMH | val | ||
| BOUA-PILAR | val | ||
| CCMatrix | eu | ga | |
| DGT | bg,cs,da,de,el ,et,fi,fr,ga,hr,hu,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv | da,et,ga,hr,hu,lt,lv,mt,sh,sl | |
| DOGV-SYNTH-BSC | val | ||
| DOGV-PILAR | val | ||
| ELRC-EMEA | bg,cs,da,hu,lt,lv,mt,pl,ro,sk,sl | et,hr,lv,ro,sk,sl | |
| EMEA | bg,cs,da,el,fi,hu,lt,mt,nl,pl,ro,sk,sl,sv | et,mt | |
| EUBookshop | lt,pl,pt | cs,da,de,el,fi,fr,ga,it,lv,mt,nl,pl,pt,ro,sk,sl,sv | cy,ga |
| Europarl | bg,cs,da,el,en,fi,fr,hu,lt,lv,nl,pl,pt ,ro,sk,sl,sv | ||
| Europat | en,hr | no | |
| GAITU Corpus | eu | ||
| KDE4 | bg,cs,da,de,el ,et,eu,fi,fr,ga,gl,hr,it,lt,lv,nl,pl,pt,ro,sk,sl,sv | bg,ga,hr | cy,ga,nn,oc |
| GlobalVoices | bg,de,fr,it,nl,pl,pt | bg,de,fr,pt | |
| GNOME | eu,fr,ga,gl,pt | ga | cy,ga,nn |
| JRC-Arquis | cs,da,et,fr,lt,lv,mt,nl,pl ,ro,sv | et | |
| LES-CORTS-VALENCIANES-SYNTH-BSC | val | ||
| MaCoCu | en | hr,mt,uk | |
| MultiCCAligned | bg,cs,de,el,et,fi,fr,hr,hu,it,lt,lv,nl,pl,ro,sk,sv | bg,fi,fr,hr,it,lv,nl,pt | bg,cy,da,et,fi,hr,hu,lt,lv,no,sl,sr,uk |
| MultiHPLT | en, et,fi,ga,hr,mt | fi,ga,gl,hr,mt,nn,sr | |
| MultiParaCrawl | bg,da | de,en,fr,ga,hr,hu,it,mt,pt | bg,cs,da,de,el,et,fi,fr,ga,hr,hu,lt,lv,mt,nn,pl,ro,sk,sl,uk |
| MultiUN | fr | ||
| News-Commentary | fr | ||
| NLLB | bg,da,el,en,et,fi,fr,gl,hu,it ,lt,lv,pt,ro,sk,sl | bg,cs,da,de,el ,et,fi,fr,hu,it,lt,lv,nl,pl,pt ,ro,sk,sl,sv | bg,cs,cy,da,de,el,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,no,oc,pl,pt,ro,ru,sk,sl,sr,sv,uk |
| NÓS Authentic Corpus | gl | ||
| NÓS Synthetic Corpus | gl | ||
| NTEU | bg,cs,da,de,el,en,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv | da,et,ga,hr,lt,lv,mt,ro,sk,sl,sv | |
| OpenSubtitles | bg,cs,da,de,el ,et,eu,fi,gl,hr,hu,lt,lv,nl,pl,pt,ro,sk,sl,sv | da,de,fi,fr,hr,hu,it,lv,nl | bg,cs,de,el,et,hr,fi,fr,hr,hu,no,sl,sr |
| OPUS-100 | en | gl | |
| StanfordNLP-NMT | cs | ||
| Tatoeba | de,pt | pt | |
| TildeModel | bg | et,hr,lt,lv,mt | |
| UNPC | en,fr | ru | |
| PILAR-VALENCIAN-AUTH | val | ||
| PILAR-VALENCIAN-SYNTH | val | ||
| WikiMatrix | bg,cs,da,de,el ,et,eu,fi,fr,gl,hr,hu,it,lt,nl,pl,pt,ro,sk,sl,sv | bg,en,fr,hr,it,pt | oc,sh |
| Wikimedia | cy,nn | ||
| XLENT | eu,ga,gl | ga | cy,et,ga,gl,hr,oc,sh |
Datasets with "-BSC" in their names (e.g., BOUA-SYNTH-BSC, DOGV-SYNTH-BSC) are synthetic datasets obtained by machine translating pre-existing monolingual corpora with our own seq-to-seq models. These datasets were generated internally for model training and are not published.
To consult the data summary document with the respective licences, please send an e-mail to ipr@bsc.es.
This model has been fine-tuned on ~135k instructions, primarily targeting machine translation performance for Catalan, English, and Spanish. Additional instruction data for other European and closely related Iberian languages was also included, as it yielded a positive impact on the languages of interest. That said, the performance in these additional languages is not guaranteed due to the limited amount of available data and the lack of resources for thorough testing.
A portion of our fine-tuning data comes directly from, or is sampled from TowerBlocks. We also created additional datasets for our main languages of interest. While tasks relating to machine translation are included, it’s important to note that no chat data was used in the fine-tuning process. The final distribution of tasks was as below:

Click the expand button below to see the full list of tasks included in the finetuning data.
| Task | Source | Languages | Count |
|---|---|---|---|
| Multi-reference Translation | TowerBlocks: Tatoeba Dev (filtered) | mixed | 10000 |
| Paraphrase | TowerBlocks: PAWS-X Dev | mixed | 3521 |
| Named-entity Recognition | AnCora-Ca-NER | ca | 12059 |
| Named-entity Recognition | BasqueGLUE, EusIE | eu | 4304 |
| Named-entity Recognition | SLI NERC Galician Gold Corpus | gl | 6483 |
| Named-entity Recognition | TowerBlocks: MultiCoNER 2022 and 2023 Dev | pt | 854 |
| Named-entity Recognition | TowerBlocks: MultiCoNER 2022 and 2023 Dev | nl | 800 |
| Named-entity Recognition | TowerBlocks: MultiCoNER 2022 and 2023 Dev | es | 1654 |
| Named-entity Recognition | TowerBlocks: MultiCoNER 2022 and 2023 Dev | en | 1671 |
| Named-entity Recognition | TowerBlocks: MultiCoNER 2022 and 2023 Dev | ru | 800 |
| Named-entity Recognition | TowerBlocks: MultiCoNER 2022 and 2023 Dev | it | 858 |
| Named-entity Recognition | TowerBlocks: MultiCoNER 2022 and 2023 Dev | fr | 857 |
| Named-entity Recognition | TowerBlocks: MultiCoNER 2022 and 2023 Dev | de | 1312 |
| Terminology-aware Translation | TowerBlocks: WMT21 Terminology Dev (filtered) | en-ru | 50 |
| Terminology-aware Translation | TowerBlocks: WMT21 Terminology Dev (filtered) | en-fr | 29 |
| Automatic Post Editing | TowerBlocks: QT21, ApeQuest | en-fr | 6133 |
| Automatic Post Editing | TowerBlocks: QT21, ApeQuest | en-nl | 9077 |
| Automatic Post Editing | TowerBlocks: QT21, ApeQuest | en-pt | 5762 |
| Automatic Post Editing | TowerBlocks: QT21, ApeQuest | de-en | 10000 |
| Automatic Post Editing | TowerBlocks: QT21, ApeQuest | en-de | 10000 |
| Machine Translation Evaluation | TowerBlocks-sample: WMT20 to WMT22 Metrics MQM, WMT17 to WMT22 Metrics Direct Assessments | en-ru, en-pl, ru-en, en-de, en-ru, de-fr, de-en, en-de | 353 |
| Machine Translation Evaluation | Non-public | four pivot languages (eu, es, ca, gl) paired with European languages (bg, cs, da, de, el, en, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv) | 9700 |
| General Machine Translation | TowerBlocks: WMT14 to WMT21, NTREX, Flores Dev, FRMT, QT21, ApeQuest, OPUS (Quality Filtered), MT-GenEval | nl-en, en-ru, it-en, fr-en, es-en, en-fr, ru-en, fr-de, en-nl, de-fr | 500 |
| General Machine Translation | Non-public | three pivot languages (es, ca, en) paired with European languages (ast, arn, arg, bg, cs, cy, da, de, el, et, fi, ga, gl, hr, it, lt, lv, mt, nb, nn, nl, oc, pl, pt, ro, ru, sk, sl, sr, sv, uk, eu) | 9350 |
| Fill-in-the-Blank | Non-public | five pivot languages (ca, es, eu, gl, en) paired with European languages (cs, da, de, el, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv) | 11500 |
| Document-level Translation | Non-public | two pivot languages (es, en) paired with European languages (bg, cs, da, de, el, et, fi, fr, hu, it, lt, lv, nl, pl, pt, ro, ru, sk, sv) | 7600 |
| Paragraph-level Translation | Non-public | two pivot languages (es, en) paired with European languages (bg, cs, da, de, el, et, fi, fr, hu, it, lt, lv, nl, pl, pt, ro, ru, sk, sv) | 7600 |
| Context-Aware Translation | TowerBlocks: MT-GenEval | en-it | 348 |
| Context-Aware Translation | TowerBlocks: MT-GenEval | en-ru | 454 |
| Context-Aware Translation | TowerBlocks: MT-GenEval | en-fr | 369 |
| Context-Aware Translation | TowerBlocks: MT-GenEval | en-nl | 417 |
| Context-Aware Translation | TowerBlocks: MT-GenEval | en-es | 431 |
| Context-Aware Translation | TowerBlocks: MT-GenEval | en-de | 558 |
| Total | 135,404 |
The non-public portion of this dataset was jointly created by the ILENIA partners: BSC-LT, HiTZ, and CiTIUS. For further information regarding the instruction-tuning data, please contact langtech@bsc.es.
Below are the evaluation results on the Flores+200 devtest set, compared against the state-of-the-art MADLAD400-7B-mt model (Kudugunta, S., et al.) and SalamandraTA-7b-base model. These results cover the translation directions CA-XX, ES-XX, EN-XX, as well as XX-CA, XX-ES, and XX-EN. The metrics have been computed excluding Asturian, Aranese, and Aragonese, as we report them separately. The evaluation was conducted using MT-Lens, following the standard setting (beam search with beam size 5, limiting the translation length to 500 tokens). We report the following metrics:
BLEU: Sacrebleu implementation. Signature: nrefs:1— case:mixed— eff:no— tok:13a— smooth:exp—version:2.3.1TER: Sacrebleu implementation.ChrF: Sacrebleu implementation.Comet: Model checkpoint: "Unbabel/wmt22-comet-da".Comet-kiwi: Model checkpoint: "Unbabel/wmt22-cometkiwi-da".Bleurt: Model checkpoint: "lucadiliello/BLEURT-20".MetricX: Model checkpoint: "google/metricx-23-xl-v2p0".MetricX-QE: Model checkpoint: "google/metricx-23-qe-xl-v2p0".This section presents the evaluation metrics for English translation tasks.
| Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |
|---|---|---|---|---|---|---|---|---|
| EN-XX | ||||||||
| SalamandraTA-7b-instruct | 35.20 | 53.40 | 61.58 | 0.89 | 0.86 | 0.78 | 0.96 | 0.81 |
| MADLAD400-7B | 35.73 | 51.87 | 63.46 | 0.88 | 0.85 | 0.79 | 1.16 | 1.10 |
| SalamandraTA-7b-base | 34.99 | 52.64 | 62.58 | 0.87 | 0.84 | 0.77 | 1.45 | 1.23 |
| XX-EN | ||||||||
| SalamandraTA-7b-instruct | 44.37 | 42.49 | 68.29 | 0.89 | 0.86 | 0.80 | 1.05 | 0.99 |
| MADLAD400-7B | 43.20 | 43.33 | 67.98 | 0.89 | 0.86 | 0.80 | 1.13 | 1.15 |
| SalamandraTA-7b-base | 44.12 | 43.00 | 68.43 | 0.89 | 0.85 | 0.80 | 1.13 | 1.22 |
This section presents the evaluation metrics for Spanish translation tasks.
| Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |
|---|---|---|---|---|---|---|---|---|
| ES-XX | ||||||||
| SalamandraTA-7b-instruct | 23.68 | 67.31 | 53.98 | 0.87 | 0.83 | 0.76 | 0.93 | 0.80 |
| MADLAD400-7B | 22.48 | 68.91 | 53.93 | 0.86 | 0.83 | 0.75 | 1.09 | 1.14 |
| SalamandraTA-7b-base | 21.63 | 70.08 | 52.98 | 0.86 | 0.83 | 0.74 | 1.24 | 1.12 |
| XX-ES | ||||||||
| SalamandraTA-7b-instruct | 26.40 | 62.27 | 53.54 | 0.85 | 0.84 | 0.74 | 0.80 | 1.07 |
| MADLAD400-7B | 24.85 | 61.82 | 53.00 | 0.85 | 0.84 | 0.74 | 1.05 | 1.50 |
| SalamandraTA-7b-base | 24.71 | 62.33 | 52.96 | 0.85 | 0.84 | 0.73 | 1.06 | 1.37 |
This section presents the evaluation metrics for Catalan translation tasks.
| Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |
|---|---|---|---|---|---|---|---|---|
| CA-XX | ||||||||
| SalamandraTA-7b-instruct | 29.50 | 59.26 | 58.21 | 0.88 | 0.81 | 0.77 | 0.97 | 0.98 |
| MADLAD400-7B | 29.37 | 59.01 | 58.47 | 0.87 | 0.81 | 0.77 | 1.08 | 1.31 |
| SalamandraTA-7b-base | 29.06 | 59.32 | 58.00 | 0.87 | 0.81 | 0.76 | 1.23 | 1.28 |
| XX-CA | ||||||||
| SalamandraTA-7b-instruct | 34.51 | 54.21 | 60.10 | 0.86 | 0.81 | 0.76 | 0.90 | 1.29 |
| MADLAD400-7B | 33.02 | 55.01 | 59.38 | 0.86 | 0.81 | 0.75 | 1.18 | 1.79 |
| SalamandraTA-7b-base | 32.75 | 55.78 | 59.42 | 0.86 | 0.81 | 0.75 | 1.17 | 1.63 |
This section presents the evaluation metrics for Galician translation tasks.
| Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |
|---|---|---|---|---|---|---|---|---|
| GL-XX | ||||||||
| SalamandraTA-7b-instruct | 36.95 | 50.12 | 62.55 | 0.88 | 0.85 | 0.77 | 0.86 | 0.98 |
| MADLAD400-7B | 26.43 | 64.30 | 55.99 | 0.86 | 0.85 | 0.76 | 1.35 | 2.06 |
| SalamandraTA-7b-base | 27.47 | 61.39 | 56.96 | 0.87 | 0.82 | 0.76 | 1.23 | 1.29 |
| XX-GL | ||||||||
| SalamandraTA-7b-instruct | 34.37 | 52.49 | 60.99 | 0.88 | 0.85 | 0.73 | 0.75 | 0.92 |
| MADLAD400-7B | 27.77 | 59.46 | 54.92 | 0.84 | 0.85 | 0.67 | 1.42 | 2.72 |
| SalamandraTA-7b-base | 28.22 | 59.52 | 56.28 | 0.85 | 0.82 | 0.69 | 1.27 | 1.78 |
This section presents the evaluation metrics for Basque translation tasks.
| Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |
|---|---|---|---|---|---|---|---|---|
| EU-XX | ||||||||
| SalamandraTA-7b-instruct | 29.89 | 58.54 | 56.66 | 0.87 | 0.85 | 0.76 | 0.90 | 0.89 |
| MADLAD400-7B | 21.26 | 69.75 | 49.80 | 0.85 | 0.82 | 0.72 | 1.54 | 2.71 |
| SalamandraTA-7b-base | 22.87 | 67.38 | 52.19 | 0.86 | 0.79 | 0.74 | 1.19 | 1.61 |
| XX-EU | ||||||||
| SalamandraTA-7b-instruct | 18.89 | 71.74 | 57.16 | 0.87 | 0.84 | 0.82 | 0.58 | 0.44 |
| MADLAD400-7B | 13.64 | 85.01 | 50.96 | 0.82 | 0.80 | 0.78 | 2.09 | 3.58 |
| SalamandraTA-7b-base | 17.01 | 75.92 | 55.22 | 0.85 | 0.77 | 0.80 | 1.04 | 1.17 |
The tables below summarize the performance metrics for English, Spanish, and Catalan to Asturian, Aranese and Aragonese compared against Transducens/IbRo-nllb (Galiano Jimenez, et al.), NLLB-200-3.3B (Costa-jussà et al., 2022) and SalamandraTA-2B.
| source | target | Bleu ↑ | Ter ↓ | ChrF ↑ | |
|---|---|---|---|---|---|
| SalamandraTA-7b-instruct | en | ast | 31.79 | 54.07 | 61.78 |
| SalamandraTA-7b-base | en | ast | 26.40 | 64.02 | 57.35 |
| Transducens/IbRo-nllb | en | ast | 20.56 | 63.92 | 53.32 |
| SalamandraTA-7b-instruct | en | arn | 22.77 | 66.06 | 52.61 |
| SalamandraTA-7b-base | en | arn | 14.13 | 74.05 | 46.17 |
| Transducens/IbRo-nllb | en | arn | 12.81 | 73.21 | 45.76 |
| SalamandraTA-7b-instruct | en | arg | 19.74 | 71.58 | 51.08 |
| Transducens/IbRo-nllb | en | arg | 14.07 | 70.37 | 46.89 |
| SalamandraTA-7b-base | en | arg | 12.24 | 73.48 | 44.75 |
| source | target | Bleu ↑ | Ter ↓ | ChrF ↑ | |
|---|---|---|---|---|---|
| SalamandraTA-7b-instruct | es | ast | 20.66 | 71.81 | 53.14 |
| SalamandraTA-7b-base | es | ast | 17.65 | 75.78 | 51.05 |
| Transducens/IbRo-nllb | es | ast | 16.79 | 76.36 | 50.89 |
| SalamandraTA-7b-base | es | arn | 51.59 | 35.51 | 73.50 |
| Transducens/IbRo-nllb | es | arn | 50.20 | 36.60 | 73.16 |
| SalamandraTA-7b-instruct | es | arn | 47.37 | 39.29 | 70.65 |
| Transducens/IbRo-nllb | es | arg | 59.75 | 28.01 | 78.73 |
| SalamandraTA-7b-base | es | arg | 53.96 | 31.51 | 76.08 |
| SalamandraTA-7b-instruct | es | arg | 44.10 | 39.98 | 71.12 |
| source | target | Bleu ↑ | Ter ↓ | ChrF ↑ | |
|---|---|---|---|---|---|
| SalamandraTA-7b-instruct | ca | ast | 28.13 | 58.84 | 58.98 |
| SalamandraTA-7b-base | ca | ast | 26.11 | 63.63 | 58.08 |
| Transducens/IbRo-nllb | ca | ast | 24.77 | 61.60 | 57.49 |
| SalamandraTA-7b-base | ca | arn | 31.76 | 53.71 | 60.71 |
| Transducens/IbRo-nllb | ca | arn | 31.22 | 54.30 | 60.30 |
| SalamandraTA-7b-instruct | ca | arn | 30.89 | 54.70 | 59.78 |
| Transducens/IbRo-nllb | ca | arg | 24.44 | 60.79 | 55.51 |
| SalamandraTA-7b-base | ca | arg | 22.53 | 62.37 | 54.32 |
| SalamandraTA-7b-instruct | ca | arg | 20.96 | 65.64 | 52.41 |
Below are the evaluation results for gender aware translation evaluated on the MT-GenEval dataset (Currey, A. et al.). These have been calculated for translation from English into German, Spanish, French, Italian, Portuguese and Russian and are compared against MADLAD400-7B-mt, TowerInstruct-7B-v0.2 and the SalamandraTA-7b-base model. Evaluation was conducted using MT-Lens and is reported as accuracy computed using the accuracy metric provided with MT-GenEval.
| Source | Target | Masc | Fem | Pair | |
|---|---|---|---|---|---|
| MADLAD400-7B | en | de | 0.877 | 0.823 | 0.713 |
| SalamandraTA-7b-base | en | de | 0.857 | 0.770 | 0.660 |
| SalamandraTA-7b-instruct | en | de | 0.863 | 0.867 | 0.740 |
| TowerInstruct-7B-v0.2 | en | de | 0.863 | 0.840 | 0.727 |
| MADLAD400-7B | en | es | 0.887 | 0.780 | 0.687 |
| SalamandraTA-7b-base | en | es | 0.890 | 0.733 | 0.643 |
| SalamandraTA-7b-instruct | en | es | 0.860 | 0.837 | 0.710 |
| TowerInstruct-7B-v0.2 | en | es | 0.850 | 0.823 | 0.693 |
| MADLAD400-7B | en | fr | 0.873 | 0.777 | 0.663 |
| SalamandraTA-7b-base | en | fr | 0.887 | 0.710 | 0.617 |
| SalamandraTA-7b-instruct | en | fr | 0.900 | 0.813 | 0.730 |
| TowerInstruct-7B-v0.2 | en | fr | 0.880 | 0.823 | 0.717 |
| MADLAD400-7B | en | it | 0.907 | 0.663 | 0.597 |
| SalamandraTA-7b-base | en | it | 0.893 | 0.593 | 0.513 |
| SalamandraTA-7b-instruct | en | it | 0.913 | 0.780 | 0.707 |
| TowerInstruct-7B-v0.2 | en | it | 0.947 | 0.747 | 0.713 |
| MADLAD400-7B | en | pt | 0.923 | 0.687 | 0.627 |
| SalamandraTA-7b-base | en | pt | 0.923 | 0.650 | 0.597 |
| SalamandraTA-7b-instruct | en | pt | 0.933 | 0.797 | 0.747 |
| TowerInstruct-7B-v0.2 | en | pt | 0.907 | 0.730 | 0.670 |
| MADLAD400-7B | en | ru | 0.940 | 0.797 | 0.740 |
| SalamandraTA-7b-base | en | ru | 0.933 | 0.713 | 0.653 |
| SalamandraTA-7b-instruct | en | ru | 0.950 | 0.830 | 0.783 |
| TowerInstruct-7B-v0.2 | en | ru | 0.933 | 0.797 | 0.733 |
Detailed information on the work done to examine the presence of unwanted social and cognitive biases in the base model can be found at Salamandra-7B model card. With regard to MT models, the only analysis related to bias which we have conducted is the MT-GenEval evaluation. No specific analysis has yet been carried out in order to evaluate potential biases or limitations in translation accuracy across different languages, dialects, or domains. However, we recognize the importance of identifying and addressing any harmful stereotypes, cultural inaccuracies, or systematic performance discrepancies that may arise in Machine Translation. As such, we plan to continue performing more analyses as we implement the necessary metrics and methods within our evaluation framework MT-Lens. Note that the model has only undergone preliminary instruction tuning. We urge developers to consider potential limitations and conduct safety testing and tuning tailored to their specific applications.
The Language Technologies Unit from Barcelona Supercomputing Center.
For further information, please send an email to langtech@bsc.es.
Copyright(c) 2025 by Language Technologies Unit, Barcelona Supercomputing Center.
This work has been promoted and financed by the Government of Catalonia through the Aina Project.
This work is funded by the Ministerio para la Transformación Digital y de la Función Pública - Funded by EU – NextGenerationEU within the framework of ILENIA Project with reference 2022/TL22/00215337.
The success of this project has been made possible thanks to the invaluable contributions of our partners in the ILENIA Project: HiTZ, and CiTIUS. Their efforts have been instrumental in advancing our work, and we sincerely appreciate their help and support.
Be aware that the model may contain biases or other unintended distortions. When third parties deploy systems or provide services based on this model, or use the model themselves, they bear the responsibility for mitigating any associated risks and ensuring compliance with applicable regulations, including those governing the use of Artificial Intelligence.
The Barcelona Supercomputing Center, as the owner and creator of the model, shall not be held liable for any outcomes resulting from third-party use.
If you find our model useful, we would appreciate if you could cite our work as follows:
@misc{gilabert2025salamandrasalamandratabscsubmission,
title={From SALAMANDRA to SALAMANDRATA: BSC Submission for WMT25 General Machine Translation Shared Task},
author={Javier Garcia Gilabert and Xixian Liao and Severino Da Dalt and Ella Bohman and Audrey Mash and Francesca De Luca Fornaciari and Irene Baucells and Joan Llop and Miguel Claramunt Argote and Carlos Escolano and Maite Melero},
year={2025},
eprint={2508.12774},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2508.12774},
}